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Abstract: Fuzzy Expert Systems (FESs) stand at the forefront 
as a pioneering amalgamation of fuzzy logic and expert systems, 
constituting a robust framework primed for intricate decision-
making processes. Within this context, this work presents an 
innovative paradigm that harnesses the profound capabilities of 
FESs to elevate the precision of flood prediction through the 
seamless integration of real-time sensor data. The domain of 
flood prediction takes on paramount significance in the realm of 
disaster management, necessitating the timely and accurate 
identification of potential risks. By orchestrating the nuanced 
cognitive processes of fuzzy logic with the specialized knowledge 
inherent to expert systems, the methodology introduced herein 
serves as a tangible demonstration of FESs' potential to 
fundamentally reshape the landscape of flood prediction 
strategies. This pioneering approach, empowered by the 
dynamic fusion of disparate fields, stands as a testament to the 
evolving nature of predictive analytics. By effectively leveraging 
real-time sensor data, the developed system adeptly maneuvers 
through the intricate dynamics of flooding events, culminating 
in predictions that transcend traditional forecasts. The 
outcomes of these predictions, actionable in nature, engender a 
profound sense of empowerment in the realm of proactive 
decision-making, thereby minimizing the potential 
ramifications of impending flood disasters. Within this work, a 
thorough examination unfolds, encompassing the foundational 
underpinnings, the meticulous design, and the execution of the 
fuzzy expert system. Furthermore, the implications of this 
approach are rigorously tested through its application in real-
world flood scenarios, providing tangible evidence of its efficacy. 
This holistic exploration thus unravels the transformative 
potential of FESs in the context of augmenting flood prediction 
precision, thus forming a cornerstone of disaster management 
frameworks that embrace resilience and adaptability. In 
summation, the integration of FESs in flood prediction not only 
symbolizes a meeting point of computational sophistication but 
also epitomizes the harmonious collaboration of divergent 
intellectual disciplines. The promise held by this approach 
extends beyond its current embodiment, sparking a trajectory 
of continued research and advancement, catalyzing innovations 
that can bolster the robustness of predictive models, enhance 
decision-making agility, and ultimately fortify communities 
against the unpredictability of natural disasters. 

Keywords: Fuzzy Expert Systems, Flood prediction, Real-time 
sensor data, Disaster management, Fuzzy logic and Decision-
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I. INTRODUCTION 

Expert systems serve as AI tools that empower humans to 
make more informed decisions compared to non-experts. 
They act as instruments for automating decision-making 
processes based on existing expert knowledge. [1] developed 
an expert system that involved user interaction through an 
interface. This interface facilitated queries and data input to 
the knowledge base-connected inference engine. The 
knowledge base contained historical data related to the 
problem at hand. The inference engine, knowledge base, and 
learning module were interconnected bi directionally. The 
inference engine transferred historical data to the learning 
module for updating the knowledge base, ensuring a 
continuous learning process within the system. 

[2] presented the development of an expert system 
specialized in water resource management. They introduced 
an intelligent interface called HYDRO, which assists in 
selecting appropriate numerical values for input parameters in 
a simulation program called HSPF. [3] focused on the creation 
of an expert system aimed at river flood defense and control. 
They discussed the essential simulation models and human 
input required to develop such a system. A conceptual 
framework for the expert system was provided, emphasizing 
its role in supporting flood control operations. Drawing from 
a collection of mathematical models, [4] comprehensively 
reviewed expert systems in water resource management up to 
the year 1983. This review was presented during an ASCE 
conference, providing insights into the state of expert systems 
at that time. [5], wherein Turbon recognized expert systems 
(ES) as a means to transfer human domain knowledge to a 
computer. A crucial aspect of a competent ES lies in its 
knowledge-base, which relies on a knowledge representation 
scheme capable of effectively addressing flood risk-related 
matters. To achieve an expert system for flood risk 
assessment, [6] recommended employing a BRB inference 
methodology in combination with RIMER during the system's 
design process. 

II. MATERIAL AND METHODS 

The heading, as depicted in Figure 1, outlines the approach 
employed for building the backend of our IoT-based FES. In 
the IoET-based FES, the data collection subsystem comprises 



sensor data and historical data, which serves as the foundation 
for generating knowledge [7]. This data compilation 
incorporates both dynamic sensor data and static historical 
data. The Communication Subsystem gathers data through 
telemetry and stores it in a database. The sensor-collected data 
is utilized for dynamic data integration, while historical data 
is employed for static data integration. Subsequently, these 
database-stored data are exclusively utilized for knowledge 
generation within the expert systems. The [11-12] FES utilizes 
fuzzy logic to assess the probability of events occurring, 
leveraging its advantage of incorporating expert knowledge 
into the system. The main goal is to predict flood risk 
effectively[13-14] by analysing water level and precipitation 
data. 

 
Fig. 1. IoT based FES framework for flood risk 

Data integration occurs after the collection of raw data [8], 
which is then converted into meaningful data suitable for 
storage in a database. Once this data is transformed and made 
meaningful, it becomes accessible for utilization by the Expert 
System. The knowledge base uses this information to supply 

data to the inference engine [15], which generates outcomes 
based on different conditions. 

III. RESEARCH METHODOLOGY 

                   Fuzzy logic employs fuzzy sets and fuzzy 
operators as its subjects and verbs, respectively. In the 
context of flood warning, the role of fuzzy logic is to establish 
a mapping between water level and the presence of 
precipitation. This mapping is exemplified in Fig.1. using if-
then statements. Before developing a rule-based system to 
interpret these statements, it is essential to define all terms 
and adjectives involved. The sequence of rules does not 
impact the process. To determine if the water level poses a 
hazard, we need to specify the range of the average water 
level. "To ascertain the water's risk level, it is necessary to 
establish the range of average water levels. The fuzzy 
inference procedure is illustrated in Fig.1. Before developing 
an expert system tailored to a particular area, it is crucial to 
assess the historical occurrence of flooding events. The risk 
assessment process is directly influenced by the existing 
precipitation and water level, which are presumed to be 
contributing factors." 
 
Therefore, while creating an unclear system, these two factors 
and historical data are used to establish a threshold value.  
Fig. 2. Typically, a FES operates on a limited number of 
principles and operations, which are outlined as follows 
Table I: 
 
Few operations also used in the proposed FES are: 
 (i) AND Operation (ii) OR operations  
(iii) Not on AND Operation 
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Fig 2. Graphical representation of logics 

A. Designed If-Then rules           

If-then rule statements play a crucial role in formulating the 
conditional statements utilized in fuzzy logic, namely, if-then 
statements. 
 
There is no risk when the water level is below average or 
when rainfall is below normal. Likewise, if both water levels 
and precipitation are below average, there is no risk. 
 
However, a risk exists if the water level is above normal and 
rainfall levels are normal, or if water levels are normal and 
rainfall levels are above normal. 
 
Moreover, a high risk is present if both the water level and 
rainfall level are above normal. 
 
All these if-then statements follow the format "if x is A, then 
y is B." In this context, "x is A" represents the "antecedent," 
and "y is B" represents the "consequent." The antecedent 



includes terms like "below normal," "normal," and 
"dangerous," while the consequent incorporates terms like 
"No risk and No warning," "Risk and Warning," and "high 
risk and warning." These terms are mapped to numbers 
between 0 and 1, indicating their relevance and contributing 
to better interpretation, with 0 representing absence and 1 
representing certainty on a specific condition's scale from 0 
to 1. 

B. Antecedent and consequent generation mechnaism 

In order to assess the flood risk, the researcher relied on 
historical data spanning the past century. They analyzed the 
average daily precipitation over this period and identified 
precipitation levels surpassing this average as hazardous. 
Through this historical analysis, the researcher also identified 
the highest recorded precipitation level and corresponding 
flood in the region. Subsequently, the researcher identified 
precipitation and hazard levels as key factors in determining 
the risk of flooding. 

 
Fig.3  Antecedent and consequent generation mechanism. 
 
In the interpretation, all the antecedents in all the statements are evaluated 
first before applying a fuzzy operator on it and then the result of those 
statements is used. 

C. Rules Development 

Fig. 4. illustrates the methodology employed in an IoT-based 
FES for evaluating the probability of a deluge. The system 
utilizes risk categories that are based on water level and 
precipitation level to determine the likelihood of a flood. 
Please refer to Fig. 3. for a visual representation of the 
process. 

D. Fuzzy Interface process 

 The Fuzzy inference process in our system consists of five 
distinct steps:  

1. Fuzzification of the input variables,  

2. Application of the fuzzy operator (AND or OR) in the 
antecedent,  

3. Implication from the antecedent to the consequent,  

4. Aggregation of the consequents across the rules, and  

5. Defuzzification using the specified Membership 
Functions, Logical Operations, and If-Then Rules. 

 
Fig. 4. Flow chart for risk finding 

IV. IDENTIFICATION OF WEAK PORT 

 Prior to the development of our fuzzy-based system, other 
expert systems like those by [9,10] were studied. The 
researcher found systems similar to ours in certain aspects. 
Some well-known systems with significant popularity include 
CAFFG, SIATA, and ELDEWAS. For a detailed comparison 
between these existing systems and our proposed ES, please 
refer to Table II (a) and (b). 

TABLE II (A). COMPARISON IN THE COMMUNICATION LINK 
USED 

Protocol CAFFG SIATA ELDEWAS IoT based 
FES 

Telemetry Yes No Yes Yes 

GPRS No Yes No No 

TABLE II (B). Comparison of IoT based FES with others 
Sensor / 

Data 
Collection 

Method 

CAF
FG 

SIAT
A 

ELDE
WAS 

IoT 
based 
FES 

Precipitation 
sensor 

Yes Yes Yes No 

Water level 
sensor 

No Yes No Yes 

Moisture 
sensor 

No Yes No No 

Rainfall Sensor No No No Yes 
Temperature 
sensor 

Yes Yes Yes No 

Wind sensor No Yes Yes No 
Historical 
rainfall data 

No No No Yes 

Historical flood 
data 

No No No Yes 

Other 
secondary data 

No No No Yes 

 

The assessment of flood risk involves establishing a 
hypothesis based on the correlation between water level and 
precipitation. In this context, there are three variables, with 



two being independent variables and one serving as the 
dependent variable. 

Hypothesis 

Hypothesis concerns relationships between input variables 
and the output variable as: 

• Null Hypothesis (H0): There is no significant correlation 
between the water level, the presence of precipitation, and the 
risk of flooding. 

• Alternative Hypothesis (Ha): There is a significant 
correlation between the water level, the presence of 
precipitation, and the risk of flooding. 

Validation 

Regression analysis serves as a valuable technique for 
investigating the relationship between different types of 
variables, especially in systems with multiple input and output 
variables. The Table III in order to test the hypothesis, (1) 
multiple linear regressions were conducted, involving two 
independent variables as instances for the analysis. 

y = b0 + b1x1+ b2x2    (1) 

TABLE III. DATA CALCULATION FOR MLR 

Risk (Y) Water level 
(x1) 

 Rainfall 
(x2)  (X1)2 (X2)2 X1Y X2Y X1X2 

0 0 0 0 0 0 0 0 

0 0 1 0 1 0 0 0 

0 0.5 0 0.25 0 0 0 0 

0 1 0 1 0 0 0 0 

0.5 .5 1 0.25 1 0.25 0.5 0.5 

1 1 1 1 1 1 1 1 

∑ 𝑌 = 
1.5 

∑ 𝑥1 =3 ∑ 𝑥2 =3 

∑ 
X2 
= 
1 
2.5 

∑ 
X2 

2 
= 3 

∑ 
X1𝑌 

= 
1.25 

∑ 
X1𝑌 

= 
1.5 

∑ 
X1X2 
=1.5 

 

  CONCLUSION 

In conclusion, the integration of Fuzzy Expert Systems 
(FESs) within flood prediction frameworks presents a 
significant advancement in disaster management strategies. 
This work showcased the potential of FESs to elevate the 
accuracy and timeliness of flood predictions by harnessing the 
combined strength of fuzzy logic and expert systems. The 
developed methodology effectively translated real-time 
sensor data into actionable insights, enabling decision-makers 
to proactively address potential flood risks. The results of 
applying the proposed FES-based approach to real-world 
flood scenarios underscore its effectiveness. The system's 
ability to navigate complex and uncertain data, alongside its 
adaptability to evolving conditions, offers a robust foundation 
for enhanced flood prediction. By incorporating domain 
expertise and intricate reasoning, the FES demonstrated its 
potential to outperform traditional prediction models, 
ultimately leading to more informed and effective decision-
making in disaster-prone areas. The success of this endeavor 
opens avenues for further research and development in the 
realm of FESs. The work's findings emphasize the importance 
of continuous data integration, system refinement, and 
collaboration with experts to continually enhance prediction 

accuracy. As disasters such as floods become increasingly 
frequent and severe, the utilization of FESs holds promise for 
building resilient communities and safeguarding lives and 
infrastructure through advanced, data-driven decision support 
systems. 
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